TODAY'S ASSIGNMENT:

14.5 part 2 #17, 23, 24, 31, 36, 38, 40-42

solve with calculator, sketch diagrams when appropriate, okay to write only the answer if properly labeled

Q₁,Q₂,Q₃: Points that break data into four quartiles. MEDIAN OF OVERALL DATA

Q₁: median of *lower* half of data **Q2**: <u>median</u> of the *entire* data set **Q₃**: median of *upper* half of data Minimum and Maximum values are the ends of the whiskers.

25% of the data can be found in each of the 4 regions created by the quartile points.

Five-number summary for a data set: MIN, Q_1 , MEDIAN, Q_3 , MAX

option 1: 1-Var Stats

 $\mathbf{X} = \text{mean} (\text{average})$ $\Sigma \mathbf{x} = \text{sum of all data values}$ $\Sigma \mathbf{x}^2 = \text{sum of the squared data values}$ Sx = sample standard deviation $\sigma \mathbf{x} =$ population standard deviation n = total number of data values $\min X =$ smallest data value $Q_1 =$ first quartile Med= median of overall data set (2nd Quartile) $Q_3 =$ third quartile $\max X =$ largest data value

<mark>STANDARD DEVIATION = σ</mark>

- A measure of spread that indicates the variability of data around a central value.
- Sigma (σ) can be found when calculating
 1-Variable Stats

- $\mathbf{X} = \text{mean} (\text{average})$
- $\Sigma \mathbf{x} =$ sum of all data values
- $\Sigma \mathbf{x}^2 =$ sum of the squared data values
- Sx = sample standard deviation
- σ x = population standard deviation
- n = total number of data values

check EVEN answers for 14.5 part 2 #17,23,24,31,36,38,40-42

#23,24→label all 5 points and use appropriate scale for given data
#36→use two lists to enter data
#38→ skip MEAN calculation
1 2 2.9 3 3.09 3.10 4.3
5.04 13 33.8 39.5 52 61
70 80.5 89 99 948 961.5

First enter values into a **LIST** in your calculator, then **Sort**. Create a stem and leaf plot using this list that is now in order from smallest to largest.

NORMAL FLOAT AUTO REAL DEGREE MP

DIT CALC TESTS Edit... 2:SortA(3:SortD(4:ClrList 5:SetUpEditor Hint: first enter values into a LIST in your calculator, then sort. Use this info to create stem & leaf plot.

Ō

NORMAL	FLOAT	AUTO	REAL	DEGREE	MP	Û
ClrAI	llLig	sts			D -	
Sortf	A(L1))				ne.
					Do	ne.

Key Press

L2	L3	<u> </u>	L5	L6	\rightarrow
21					
23		_	_		_
23		_	_		_
23		_	_		_
24		_	_		_
26		_	_		_
30			_		_
30					_
32		_			
33		_			_
55					
L2(1)=	:21				

Hint: first enter values into a LIST in your calculator, then sort. Use this info to create stem & leaf plot.

14.5 #40a check answers

Stem	Leaf								
3.0	1 2 2 2 3 4 5 5 7 8 9 9 9 9								
3.1	0 0 0 2 7 9								
3.2	2 3 4 5 6								
3.3	1 5 6 Hint: first enter values								
3.4	1 3 Calculator, then sort. Use this info to create stem & leaf plot.								
	3.0 1 mean 3.01								

Calculator hints regarding data input:

to clear each list → if you are editing a list, just arrow up and highlight L1, then push clear and <enter>

to clear ALL lists at once → 2nd Mem (above the + sign), then ClrAllLists

get started by entering data into a list → push STAT button, then choose option 1:Edit (push 2nd QUIT to close window when finished)

See instructions on gold reference sheet:

to calculate mean, median, STANDARD DEVIATION, etc→ push STAT CALC to calculate statistics for your data by choosing option 1: 1-Var Stats L₁.

Important: be sure to fill in the appropriate list name, otherwise L₁ will be chosen by default each time. Use down arrow to view **ALL** data in both screens.

NOTE: if using frequency table, enter 1: 1-Var Stats L1, L2

See instructions on gold reference sheet: